ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

HERBAL DRUGS ENHANCING THE TREATMENT OF DIABETES MELLITUS

Madhu Sahu^{1*}, Prerana Sahu², Neha Dubey³

¹RKDF College of Pharmacy, SRK University, Bhopal

²Rungta Institute of Pharmaceutical Sciences, Bhilai

³Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari

Abstract:

Diabetes mellitus is becoming a common metabolic disorder which has serious threat to public health in the world. There are chemicals and biochemical agent that helps in controlling diabetes but there is no permanent remedy available which helps to get recovered completely from this disorder. By conducting large number of research work, numerous traditional medicines have been found for diabetes. Substances and extracts isolated from different natural resources especially plants have always been a rich arsenal for controlling and treating diabetes problem and complication arising due to it. So this review helps the reader to understand the importance of various types of herbal and polyherbal formulations present traditionally which can be used to treat diabetes mellitus.

Keywords: Diabetes mellitus, Herbal drugs

1. INTRODUCTION:

Diabetes mellitus is that the most typical endocrine disorder which currently affects quite 100 million people worldwide and thus the amount of people with diabetes is increasing because of increase, aging and increasing prevalence of obesity and physical inactivity(1) .India is that the world's second most populous country, having more people with type 2 diabetes than in the other nation because the disease prevails in both genders and every one age groups Plants are wont to treat non-insulin dependent diabetes since past (2). Numerous investigators have taken great interest in plants as possible sources for brand spanking new hypoglycemic agents and lots of plants have already been screened (3). Today, quite 800 plants are identified as potential treatments Indian traditional health care system uses variety of medicinal plants traditionally over 1000 years in herbal preparations(4). Medicinal plants, minerals and organic matter cover a serious a part of traditional medicines. Most of the Indian traditional medical practitioners formulate and dispense their own recipes (5). 21,000 plants are listed by the WHO, which are used for medicinal purposes around the world. Among these, 2500 species are in India, out of which, 150 species are used commercially on a fairly large scale (6). India is that the largest producer of medicinal herbs and is named the arboretum of the planet Ethnology botanical information reports about 800 plants which possess anti-diabetic potential within the developed

www.ijcrt.org

© 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

countries, the use of herbal medicine for the sufferers of diabetes is inspired by the priority about the adverse effects and price associated with chronic use of synthetic drug (7). There are wide ranges of phyto constituents useful within the treatment of diabetes (8). These include alkaloids, glycosides, peptidoglycan, hypoglycan, steroids, guanidine, glycopeptides, terpenoides, amino acids and inorganic ions. consistent with ethno botanical survey, there are about 800 plants which possesses anti diabetic potential(9). DM may be a group of metabolic alterations characterized by hyperglycemia II. Type I diabetes often mentioned as type I diabetes (10), is insulin dependent and known to affect only 5% of the diabetic population, the sort II, which is non-insulin dependent, usually develops in adults over the age of 40(11). it's already been established that chronichyperglycemia of diabetes is related to future damage, dysfunction and eventually the failure of organs, especially the eyes, kidneys, nerves, heart and blood vessels. It has an adverse effect on carbohydrate, lipid and protein metabolism resulting in chronic hyperglycemia and abnormality of lipid profile(12). These cause series of secondary complications including polyurea, polyphasia, ketosis, retinopathy also as cardiovascular disorder the traditional drugs are wont to treat diabetes by improving insulin sensitivity increasing insulin production and decreasing the number of glucose in blood(13). The adverse effect of drug treatment aren't always satisfactory in maintaining normal levels of blood glucose and this view many medicinal plants are provided a possible source of anti-diabetic principle which are widely used for the treatment of DM in various traditional system of drugs worldwide and lots of of them are known to be effective against diabetes(14). The hypoglycemic effect of pharmacologically active component of plant decrease the effect on α-amylase and various direct and indirect effects of varied blood parameters responsible for development of diabetes (15) an outsized number of antidiabetic medicines are available within the pharmaceutical marketplace for diabetes and its related complications; however, currently no effective therapy is out there to cure the diseaseHowever, thanks to unwanted side effects the efficacies of those compounds are debatable and there is a demand for brand spanking new compounds for the treatment of diabetes(16). within the previous few years, there has been a growing interest within the herbal medicine in care and management of diabetes both in developing and developed countries, thanks to their natural origin and fewer side ffects. In this review, an effort has been made to compile the reported hypoglycemic plants available in several scientific journals and should be useful to the health professionals, scientists and students working within the field of pharmacology and therapeutics to develop evidence based medicine to cure different sorts of diabetes in man and animals. This review shows the importance and therefore the refore the interest placed on medicinal plants within the drive to demonstrate their antidiabetic effects and the responsible bioactive agents (17).

A progression of survey papers are delivered managing the use of metabolomics research in T2DM and other metabolic problems All things considered, a specific audit article on the utilization of metabolomics approaches concerning the roles of therapeutic plants in diabetes treatment has not been distributed up so far(18). it might presumably guide specialists, doctors and researchers to seek out the simplest therapeutic plant or new drug details for imminent improvements in diabetes the board and treatment(19). Accordingly, this paper means to feature and survey the present metabolomics considers, which have demonstrated expected biomarkers of natural examples and residential grown medication in vivo tries (20). Around 800 plant species are accounted for to possess antidiabetic properties (21). A couple of plant animal varieties are utilized for avoidance or the executives of diabetes by the Local Americans, Chinese, South Americans and Asian Indians.

In this audit article, an attempt has been made to rearrange the detailed hypoglycemic plants accessible in various logical diaries and could be valuable to the wellbeing experts, researchers and researchers working within the field of pharmacology and therapeutics to make proof based elective medication to repair various sorts of diabetes in man and creatures (22). This audit shows the importance and therefore the refore the premium placed on restorative plants within the drive to exhibit their antidiabetic impacts and the capable bioactive specialists (23). This survey additionally covers the regular name of a plant, the parts that are generally utilized as a cure sources, concentrates, dosages, and a test model(24).

1.1 Anti Debetic effect and role of natural products : 1.1.1 Vine tea

Antidiabetic effect of (Vine itea) Extraction of Vine tea leaves using boiling Water in High fat diet iand streptozotocin-induced T2DM (25). The methanolic extracts were fed to the animals at a dosage of 250 and 500 mg/kg weight(26).

1.1.2 Centella asiatica

Pegaga is a conventional Malay solution for a wide scope of protests (27). Among the 'pegaga', Centella asiatica has been utilized as a solution for diabetes mellitus (28). Along these lines, we chose to approve this case by assessing the in vivo antidiabetic property of C. asiatica (CA) on T2DM rodent model utilizing the comprehensive 1H NMR-based metabolomics approach (29).

1.1.3 Genipin

Genipin possesses a good spectrum of biological activities together with amelioratory effects on polygenic disease, however the definite mechanism of this impact remains unknown (30). to research the medicine activities of genipin and explore the organic chemistry changes of humor endogenous metabolites on diabetic rats evoked by alloxan, 1H proton magnetic resonance spectrum analysis let alone variable knowledge analysis was want to (32).

1.1.4 Gegen Qinlian

Metabonomic profiles of the sort a pair of diabetic rats evoked by streptozotocin and high-sugar, high fat diet on the treatment of Gegen Qinlian stewing (GQD) for nine weeks were investigated (33). Rats were arbitrarily divided into 5 groups: traditional management (NC), sort a pair of polygenic disease (DM), Glucophage hydrochloric, GQD in high and low dosages (34). Plasma samples for 1H NMR-based metabolomic analysis, bodily fluid samples for clinical organic chemistry, and liver and duct gland tissues for histopathology take a look at were collected. Symptom effectualness of GQD and its ability to ameliorate the diabetic symptoms in a very world scale (35). NMR-based metabonomics approach is useful for the additional understanding of diabetes-related mechanisms (36).

1.1.5 Curcuma longa

Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with Associate in Nursing unbalanced diet (37). Indeed, ancient food supplements are long wont to counter metabolic impairments elicited by unbalanced diets (38). Curcuma longa has been provided by nuclear magnetic resonance metabolomics and GC-MS lipidomics of the liquid body substance (39). Curcuma longa extract (1% of curcuminoids within the extract) for 10 weeks (40). Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the liquid body substance nuclear magnetic resonance profiles and carboxylic acid composition (determined by GC/MS) showed a transparent discrimination between HFS teams and controls. (41)

1.1.6 Ge Gen Qin Lian

Changes in endogenous metabolites within the plasma of streptozotocin (STZ)-induced diabetic rats treated with Ge Gen Qin Lian Decoction (GGQLD) were studied (42). The endogenous mixtures in plasma were identified utilizing ultra superior fluid chromatography combined with quadrupole-season of-flight couple mass spectrometry (UHPLC-Q-TOF-MS). Reflux extraction using ethanol (50 %) Ge Gen Qin Lian Decoction (GGQLD fruits is very good Antidiabetic effect. with Ge Gen Qin Lian Decoction (GGQLD belong to chinese medicinal plan(43).

ww	/W.II	icrt.	ora

1.1.7 Huangbai-Zhimu

Antidiabetic effect of alcoholic extract Huangbai-Zhimu herb-pair Huangbai (the dried bark of Phellodendron chinense Schneid) Zhimu (the dried rhizome of Anemarrhena asphodeloides Bge) Reflux extraction using ethanol (50 i%) Alcoholic leaves extract 200 and 500 mg/kg bw was used for these studies (44). Huangbai-Zhimu have significant antidiabetic activity in induced diabetic High fat diet and streptozotocin-induced T2DM. (45)

1.1.8 Ipomoea iaquatic

Hypoglycaemic effect Ipomoea aquatic Sonication of the aerial part of I.aquatic using ethanol High fat diet and streptozotocin induced T2DM (46). Obese diabetic rats group were administered with Ipomoea aquatic ethanolic extract (n=5) 4 weeks treatment (47).

.N	0 w	ww.ijcrt.org		© 2	21 IJCRT I V	olume 9, Issue 6 Ju	ne 2021 IS	SN: 2320-28	8 Ref
			Biological	Study			Diabetes	Statistic	
		Specific	Sample	population	Analytic	Biomarkers	type	al	
		medicinal	Sumple	and duration of	al	and	cype	method	
S .]	No	plant		treatment	platform	metabolic			Ref
		treatment			(s)	pathways			
		treatment				identified			
1		Ampelopsis grossedentata (Vine itea) Extraction of Vin tea leaves using boiling Water	Serum	Sprague Dawley rats were divided into five groups: Normal group, High-fat-diet group, High- fatdiet group treated with Pioglitazone, High-fatdiet group treated with 500 mg/L Vine itea, High-fat-diet group treated with 2000 mg/L Vine itea.	LC-MS	Acetyl-CoA, phosphoenolpyr uvic acid, cis- aconitate, fructose-1,6- phosphate, glucose-6- phosphate, i6- phospho- gluconate, uric acid, allantoin, hypoxanthine and inosine (↓)	High fat diet induced T2DM	PLS-DA ANOVA	(48)
2		Centella asiatica Maceration of the freeze dried leaves with ethanol (70 %) followed by ultrasonication	Urine	47maleSpragueDawleyratsweredividedinto fivegroupsnormlgroup(n=10)ObesiveObese-diabeticgroup(n=5)Obese-diabeticgrouptreatedwith 300 mg/kgMetformin(n=8)4weekitreatment	1H-NMR	Valine, leucine and isoleucine biosynthesis, the TCA cycle, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism, energy metabolism, purine metabolism Serum isamples: Choline, succinate, lactate, pyruvate, glutamate and alanine (↑)	High fat diet and streptozo tocin- induced T2DM	PCA	(49)
3		Coptis chinensis (berberine	Serum	116 patients with newly diagnosed T2DM and	UPLC-Q- TOF MS	The concentration ofi13 fatty acids in ipatients after	T2DM and	PLS-DA	50
L		IJCRT2106252	Internation		ive Research	Thoughts (IJCRT)	www.ijcrt.or	g c51	

4Curcuma long Normal entation and distribution insulin servicina distribution and regulation of insulin sensitivity by down- regulating fatty acids addecreased synthesis metabolism via and regulation of insulin sensitivity by down- regulating fatty acids addecreased synthesis and regulation of insulin sensitivity by down- regulating fatty acids addecreased synthesis and regulation of insulin sensitivity by down- regulating fatty acids acids (22:6n-3)High pCA fructose (51)PCA (51)4Curcuma how were divided into three groups: Normal group i rC), and evaporation of the drizone with hot water (80) of the aqueous extract then, the drizone with bot water (80) of the equeous extract then, the drizone with bot water (80) i rC), and evaporation iof the drizone with bot water (80) i rC), and evaporation iof the drizone with bot water (80) i rC), and evaporation in (a o)1H-NMR the drizone state the drizone with the drizone with bot water (80) i rC), and evaporation is finitic (22:1n-3)High fructose tacted (22:1n-3)PCA induced tracted (23:1n-3)PCA induced tracted (24:1n-3)5Gardenia jas iminoides Ellis fruit (genipin)36 male solucine, runginine, group lower divided Normal group (n=6)IH-NMR the drizone state the drizone state tracted with extract drive, runginine, glycerori, alarine, arginine, glycerorio ins, solucine, runginine, glycerorio indecrease the drizone state tracted with extracted with extracted with extract	www.ijcrt.org		© 20	021 IJCRT V	/olume 9, Issue 6 Ju	ne 2021 IS	SN: 2320-28	82
4 Curcuma long Maceration iof Curcuma inizome with hot water (80 i°C), and evaporation iof Serum mail 30 imale Sprague Dawley were divided into IH-NMR GC-MS Glutamine, glycoproteins (acetyl), C20:5n- 3 High fructose PCA (51) 6C-MS Elosopentaenoi c acid, C24:1n- 9 Nervonic acid (1) POA (51) 5 Gardenia jas fruit (genipin) Serum timinoides 36 male Sprague Dawley rats were divided Normal group (n=6) IH-NMR Glucose, valine, isoleucine, glutamate, betaine and dimethylamine, 3. Alloxan- induced T1DM PCA (52) 5 Gardenia jas (genipin) Serum (n=6) 36 IH-NMR Glucose, valine, isoleucine, glutamate, betaine and dimethylamine, 3. Alloxan- induced T1DM PCA (52) 9 Norvate, hydroxybutyrate, acitylylycoprote MovA Alloxan- induced T1DM PLS-DA ANOVA				J21 IJCRT	3months berberine administration decreased significantly.Ber berine may imediate glucose metabolism via participation in lipid metabolism and regulation of insulin scretion and insulin sensitivity by down- regulating fatty acids imetabolism, thereby enhancing glucose iutility	dyslipide	OPLS- DA ANCOV	82
iminoides Ellis fruit (genipin)Sprague Dawley rats were divided Normal group (n=6)2D-NMRisoleucine, trimethylamine- N-oxide, glutamate, betaine and dimethylamine (\$)Pyruvate, choline, arginine, glycerol, alanine, trimethylamine, 3- hydroxybutyrate , N- acetylglycoprotePLS-DA ANOVA	Maceration iof Curcuma longa rhizome with hot water (80 i°C), and evaporation iof the aqueous extract then, the rhizome residue was re- extracted with ethanol at 60	Serum	Sprague Dawley were divided into three groups: Normal group		Glutamine, glycoproteins (acetyl), C20:5n- 3 Eicosopentaenoi c acid, C22:6n-3 Docosahexaenoi c iacid, C24:1n- 9 Nervonic acid	-	PCA	(51)
	iminoides Ellis fruit	Serum	Sprague Dawley rats were divided Normal group		isoleucine, trimethylamine- N-oxide, glutamate, betaine and dimethylamine (↓)Pyruvate, choline, arginine, glycerol, alanine, trimethylamine, 3- hydroxybutyrate , N- acetylglycoprote	induced	PLS-DA	(52)

www.ijcrt.org		© Z		/olume 9, Issue 6 Ju	ine 2021 153	5N: 2320-28	82
				succinate, acetone and glutamine (↑)			
6 GenGen Qin Lian (GGQLD) consists of four herbs, Pueraria Lobatae Radix, Scutellariae Radix, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle, in ia weight ratio of 8:3:3:2. Immersing of Herb pieces iin distilled water and then extraction by refluxing	Serum	70 male Sprague– Dawley rats were randomly divided into five groups Normal group (n=10) Diabetic group (n=13), iDiabetic group treated with imetformin (n=13), Diabetic group treated iwith GGQLD (n=13), Diabetic group treated with fermented GGQLD (n=13). 8 weeks treatment	LC-MS	30 ipotential chemical markers contributed ito the separation of Ge Gen Qin Lian (GGQLD) and Fermented Ge- Gen-Qin-Lian (FGGQLD). Deglycosylation reaction by stepwise cleavage of the sugar moieties was considered the main metabolic pathway. The increasing trends of flavone aglycones (daidzein and liquiritigenin) and isoflavone C-glycosides (puerarin), as well as other homologous compounds, might be helpful for explaining the greater antidiabetic effects of FGQD, which occur partially via regulation of the levels of ISI, TC, TG, and HDL	High fat diet and streptozo tocin- induced T2DM	PCA OPLS- DA ANOVA	(53)
7 GeGen Qin Lian (GGQLD) Reflux extraction using iethanol (50 %)	Plasma	Male Sprague Dawley rats were divided into five groups: Normal group Diabetic group	1H-NMR	Glucose, glycerol, unsaturated lipids, lipoprotein iand Isoleucine, ieucine, valine,β-	High fat diet and streptozo tocin- induced T2DM	PCA PLS-DA ANOVA	(54)

W	ww.ijcrt.org		© 20	021 IJCRT \	/olume 9, Issue 6 Ju	ne 2021 IS	SN: 2320-28	82
			Diabetic group		hydroxybutyrate			
			treated with 4		,			
			g/kg GGQLD		alanine, lactate,			
			Diabetic group		arginine, N- Acetyl groups,			
			treated with 8		succinate,			
			g/kg GGQLD		glutamate,			
			Diabetic group		dimethylamine,			
			treated with 300		creatine,			
			mg/kg		creatinine,			
			Metformin		tyrosine and			
			Diabetic group		trimethylamine-			
			treated with 4		N-oxide (†)The results			
			g/kg GGQLD		confirmed the			
			Heat map		hypoglycemic			
			Diabetic group treated with 8		efficacy of			
			g/kg GGQLD		GGQLD and its			
			analysis		ability to			
			Diabetic group		ameliorate the			
					diabetic symptoms in a			
			treated with 300 mg/kg		global scale.			
			metformin		global scale.			
			9 weeks					
			treatment					
0		Distance	10		Dl. ()	Charles		(55)
8	Ge Gen Qin Lian	Plasma	18 male	UHPLC- QTOF-	Phytosphingosin	Streptoz otocin-	PCA	(55)
	(GGQLD)		Sprague Dawley rats	MS	e, dihydrosphingos	induced		
	(UUQLD)		were divided		ine (↑)	T2DM	ANOVA	
			into three			1	ANOVA	
			groups		Cholylglycine,	$\mathbf{R}^{\mathbf{v}}$		
					niacinamide	5		
			Normal igroup (n=6)		pantothenic acid,			
			(II=0)		(1)			
			Diabetic igroup		Sphingolipid			
			(n= i6) Diabetic		metabolism,			
			group treated		CoA			
			with 4.95 g/kg of		biosynthesis, primary			
			GGQLD (n=6)		bile acid			
					biosynthesis,			
					nicotinate and			
					nicotinamide			
					Metabolism.			
9	Huangbai-	Urine	Male C57BL/6 J	GC-MS	Glucose,	High fat	OPLS-	(56)
	Zhimu herb-		mice were		hexadecanoic	diet and	DA	
	pair		divided into		acid,	streptozo		
	Huangbai (the		three group		octadecanoic	tocin-		
	dried bark of		Normal group		acid, propanoic acid,	induced T2DM		
	Phellodendron				3-			
	chinense		Diabetic group		hydroxybutyric			
	Schneid)				acid, and 2,3-			
	1							

www.	ii	jcrt.org
	- 1	

www.ijcrt.org		0 2		/olume 9, Issue 6 Ju	ine 2021 15	SN: 2320-28	82
dried rhizo of Anemarrher asphodeloid Bge) Reflux extraction using iethar (50 %)	a es nol			dihydroxybutan oic acid (↓)			
10 Ipomoea aquatic Sonication the aerial part of aquatic usi ethanol (959	I. ng	Sprague– Dawley irats: Normal group (n=6) Obese diabetic group (n=5) Obese diabetic rats group were administered with Ipomoea aquatic ethanolic extract (n=5) 4 weeks treatment	1H-NMR	potential biomarkers were iidentified: Creatinine/ creatine, carnitine, 1- methyl nicotinamide, trigonelline, leucine and lysine,3- hydroxybutyrate (3- HB), formate (↑)Glucose, succinate, citrate and 2- oxoglutarate (↓)Glucose metabolism, energy metabolism, amino acid metabolism, gut microbiota and nicotinate/nicoti namide metabolism	High fat diet and streptozo tocin induced T2DM	PCA PLS-DA	(57)

Table 1.2: Investigating the effect of herbal medicines on blood metabolites of diabetic animals

www.ijcrt.org			© 2021 IJCRT Volume 9, Iss	sue 6 June :	2021 ISSN: 232
Biological isource	Family	Parts iused	Phytochemicals	Anti idiabetis iactivity	Reference
				[In ivitro	
				In ivivo]	
Acacia Arabica	Fabaceae	Seed, Bark	Polyphenol, Tannin	Alloxon diabetic rat	(58),(59)
Acacia Arabica	Fabaceae	Seed, Bark	Polyphenol, Tannin	Alloxon diabetic rat	(60)
Cassia auriculata	Fabaceae	Flower	Sterol, Triterpenoid, Flavonoid, Tannin	STZ rat	(61)
Glycine max	Fabaceae	Seed	3-O-methyl-D-chiro- inositol	Type II diabetic patient	(61)
Tamarindus indica	Fabaceae	Seed, Fruit	3-O-methyl-D-chiro- inositol	STZ rat	(62)
Xanthocercis zambesiaca	Fabaceae	Leaf	Flavonoid, Polysaccharide	Alloxan rat	(63)
Reta <mark>ma</mark> raetam	Fabaceae	whole plant	Fagomine, 4-O-beta- Dglucopyranosylfagomine, Castanospermine	Alooxan mice	(64)
Butea monosperma	Fabaceae	Fruit	Butein, Palasonin, Stigmasterol-3 β- D-glucopyranoside	Stz rat	(65)
Aegle marmelos	Rutaceae	Leaf, Seed, Fruit	Aegeline 2, Coumarin, Flavonoid, Alkaloid	Type II diabetic	(66)
Citrus reticulate	Rutaceae	Fruit	Essential oil	STZ rat	(67)
Feronia elephantum	Rutaceae	Fruit	Bioflavonoid, Triterpenoid, Stigma sterol, Bergapten		(68)
Murraya koenigii	Rutaceae	Leaf, Fruit	Carbazole, Alkaloid		(69)
Limonia acidissima	Rutaceae	Fruit	Polysaccharide	STZ rat	(70)

ww.ijcrt.org					
Allium cepa	Alliaceae	Bulb	Allyl propyl disulphide, S- methyl cysteine sulphoxide		(71)
Allium sativum	Alliaceae	Root	Diallyl disulphide oxide, Ajoene, Allyl propyl disulfide, S-allyl cysteine, S-allyl mercaptocysteine		(72)
Aloe barbadensis	Asphodelaceae	Leaf	Lophenol, 24-methyl- lophenol, 24- Ethyllophenol	STZ rat	(73)
Azadirachta indica	Meliaceae	Leaf, Seed	Nimbidin		(74)
Melia dubia	Meliaceae	Whole Plant		STZ rat	(75)
Beta vulgaris	Chenopodiaceae	Whole Plant	Sugar beet pectin, Polydextrose		(76)
Biophytum. Sensitivum	Oxalidaceae	leaf	Liminoid	STZ rat	(77)
Averrhoa bilimbi	Oxalidaceae	Seed, Leaf	Sugar beet pectin, Polydextrose	STZ mice	(78)
Bras <mark>sica</mark> junc <mark>ea</mark>	Brassicaceae	Leaf	Isorhamnetin diglucoside		(66),(67)
Raphanus sativus	Brassicaceae	Whole plant		30	(45),(66)
Lepidium sativum	Brassicaceae	Seed			(48),(66)
Cajanus cajan	Leguminosae	Leaf	(7R*,9as*)-7- phenyloctahydroquinolizin- 2-one	STZ mice	(49),(54)
Withania Somnifera	Solanaceae	Fruit	Withanolide, Alkaloid	STZ rat	(50),(57)
Lycium barbarum	Solanaceae	Fruit	Polysaccharide	STZ rat	(51),(34)
Withania Coagulans	Solanaceae	Whole Plant	Milk-coagulating enzyme, Esterase, Fatty oil, Essential oil, Alkaloid	STZ rat	(52),(56)
	Solanaceae	Leaf,	Polysaccharide		(53),(45)
Physalis alkekengi		Bark			

www.ijcrt.org

www.ijcrt.org			© 2021 IJCRT Volume 9, Iss	sue 6 June	2021 ISSN: 23
Catharanthus Roseus	Apocynaceae	Leaf	Vinculin, Alkaloid		(55),(45)
Cinnamomum Zeylanicum	Lauraceae	Seed	Cinnamaldehyde		(56),(48)
Persea americana	Lauraceae	Root	Fat, Protein, Vitamin, Mineral		(57),(46)
Coriandrum Sativum	Apiaceae	Bulb	Alanine	STZ mice	(58),(56)
Cuminum cyminum	Apiaceae	Leaf	Aldehyde		(59),(61)
Psidium guajava	Myrtaceae	Leaf, Fruit	Terpen, Flavonoid, Strictinin, Isostrictinin, Pedunculagin, Polysaccharide	STZ mice	(60),(43)
Baccharis trimera	Myrtaceae	Leaf	Polysaccharide		(61),(56)
Syzygium jambolanum	Myrtaceae	Fruit	Polysaccharide	Alloxan rat	(62),(57)
Egyptian Morus Alba	Moraceae	Bark	Polysaccharide	STZ rat	(63),(55)
Gymnema sylvestre	Asclepiadaceae	Leaf, Fruit	Gymnemic acid, Gymnema, Saponin	STZ rat	(64),(45)
Hord <mark>eum</mark> vulg <mark>are</mark>	Poaceae	Seed	Beta-glucan	Alloxan rat	(65),(70)
Triti <mark>cu</mark> m vulgare	Poaceae	Whole 26] plan	Albumin	STZ rat	(66),(61)
Hygrophila Auriculata	Acanthaceae	Whole plant	Unknown	Alloxan rat	(67),(70)
Strobilanthes Crispus	Acanthaceae	Leaf	Albumin	Alloxan rat	(68),(67)
Ibervillea sonorae	Cucurbitaceae	Root	Monoglyceride (MG), Fatty acid	STZ rat	(69),(65)
Momordica Charantia	Cucurbitaceae	Whole plant	Charantin, Momordicin, Galactosebinding lectin Non-bitter, Diosgenin, Cholesterol, lanosterol, β-sitosterol, Cucurbitacin glycoside	Alloxan rat STZ mice STZ rat	(70),(66)
Cucumis Metuliferus	Cucurbitaceae	Fruit	B-carotene, Fatty acid	STZ rat	(71),(74)
Momordica	Cucurbitaceae	Fruit	Steroidal glycoside or phenolics	STZ rat	(72)

www.ijcrt.org	vww.ijcrt.org © 2021 IJCRT Volume 9, Issue 6 June 2021 ISSN: 2320-2								
Momordica balsamina	Cucurbitaceae	Fruit	Momordicin, Vitamin C, Resin acid, Fixed oil, Carotene, Aromatic volatile oil, Alkaloid	Alloxan rat	(76)				
Jatropha curcas	Euphorbiaceae	Whole plant	Diterpene	Alloxan rat	(76),(4),(77)				
Mangifera indica	Anacardiaceae	Stem Bark,	Mangiferin, Phenolics, Flavonoid	STZ rat	(78)				
Asteraceae	Eugenia jambolana	Fruit pulp, Seed	Pandanus odorus	Alloxan rat	(78)				

2. Conclusion:

Diabetes mellitus is a most common endocrine disorder, affecting millions of people worldwide. It is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The increase in resistance and populations of patients at some risk, in conjunction with the restricted number of commercially available drugs for diabetes that still present have many side effects and also problems like unwanted hypoglycemic effect are the cause to shift the research towardstraditionally available medicine which have low side effect and wide range of bio activity and do not require laborious pharmaceutical synthesis seems highly attractive. From this review article, it may be useful to the healthprofessionals, scientists and scholars to develop evidence-based alternative medicine to cure different kinds of diabetes problem using herbal preparation. Substances and extracts isolated from different natural resources play very important role to design medicine and treat hyperglycemic problem in diabetes mellitus.

14.Reference:

- 1. Antidiabetic Activity and Phytochemical Constituents of Syzygium cumini Seeds in Puducherry Region, South India ,; Kandan Prabakaran, Govindan Shanmugav; International Journal of Pharmacognosy and Phytochemical Research 2017; 9(7); 985-989 ISSN: 0975-4873
- 2. Boteanu RM, Uyy E, Suica VI, Antohe F (2015). High-mobility group box 1 enhances the inflammatory process in diabetic lung. *Arch Biochem Biophys.* 6: 55-64.
- 3. Malviya N, Jain S and Malviya S (2010). Antidiabetic potential of medicinal plants. *Acta Pol Pharm*. 67(2): 113-8.
- Ross I (2003). A. Syzygium cumini (Linn.) Skeels. In Medicinal Plants of the World. In Chemical Constituents, Traditional and Modern Medicinal Uses, 2nd ed.; Humana Press: Totowa, NJ; Vol. 1, pp 445–454.
- 5. Joshi SR, Standl E, Tong N, Shah P, Kalra S and Rathod R (2015). Therapeutic potential of α -glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. *Expert opinion on pharmacotherap*, 16(13):1959–1981.
- 6. Bhat M, Zinjarde SS, Bhargava SY, Kumar AR and Joshi BN (2008). Antidiabetic Indian Plants: a Good Source of potent amylase inhibitors. *Evidence-Based Complementary and Alternative Medicine*, 1, 324-328.

- 7. W. Wan, B. Jiang, L. Sun, L. Xu, P. Xiao, Metabolomics reveals that vine tea (Ampelopsis grossedentata) prevents high-fat-diet-induced metabolism disorder by improving glucose homeostasis in rats, PLoS One 12 (2017).
- F. Abas, A. Khatib, V. Perumal, V. Suppaiah, A. Ismail, M. Hamid, K. Shaari, N. Lajis, Metabolic alteration in obese diabetes rats upon treatment with Centella asiatica extract, J. Ethnopharmacol. 180 (2016) 60–69.
- Y. Gu, Y. Zhang, X. Shi, X. Li, J. Hong, J. Chen, W. Gu, X. Lu, G. Xu, G. Ning, Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics, Talanta 81 (2010) 766–772.
- 10. Mentreddy SR, Mohamed AI, Rimando AM. Medicinal plants with hypoglycemic/antihyperglycemic properties: a review. Proc Assoc Adv Ind Crop Conf 2005; 20:341-353.
- 11. F. Tranchida, L. Shintu, Z. Rakotoniaina, L. Tchiakpe, V. Deyris, A. Hiol, S. Caldarelli, Metabolomic and lipidomic analysis of serum samples following curcuma longa extract supplementation in high-fructose and saturated fat fed rats, PLoS One 10 (2015).
- X.-l. Shen, H. Liu, H. Xiang, X.-m. Qin, G.-h. Du, J.-s. Tian, Combining biochemical with 1H NMRbased metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism, J. Pharm. Biomed. Anal. 129 (2016) 80–89.
- 13. Y. Yan, C. Du, Z. Li, M. Zhang, J. Li, J. Jia, A. Li, X. Qin, Q. Song, Comparing the antidiabetic effects and chemical profiles of raw and fermented Chinese Ge-Gen- Qin-Lian decoction by integrating untargeted metabolomics and targeted analysis, Chin. Med. 13 (2018) 54.
- N. Tian, J. Wang, P. Wang, X. Song, M. Yang, L. Kong, NMR-based metabonomic study of Chinese medicine Gegen Qinlian Decoction as an effective treatment for type 2 diabetes in rats, Metabolomics 9 (2013) 1228–1242
- Q. Zhang, G. Xu, J. Li, X. Guo, H. Wang, B. Li, J. Tu, H. Zhang, Metabonomic study on the plasma of streptozotocin-induced diabetic rats treated with Ge Gen Qin Lian Decoction by ultra high performance liquid chromatography-mass spectrometry, J. Pharm. Biomed. Anal. 120 (2016) 175– 180.
- L. Song, H. Liu, Y. Wang, Y. Wang, J. Liu, Z. Zhou, H. Chu, P. Zhuang, Y. Zhang, Application of GC/MS-based metabonomic profiling in studying the therapeutic effects of Huangbai–Zhimu herbpair (HZ) extract on streptozotocin-induced type 2 diabetes in mice, J. Chromatogr. B 997 (2015) 96– 104.
- 17. A.A.B. Sajak, A. Mediani, N.S.M. Dom, C. Machap, M. Hamid, A. Ismail, A. Khatib, F. Abas, Effect of Ipomoea aquatica ethanolic extract in streptozotocin (STZ) induced diabetic rats via 1H NMR-based metabolomics approach, Phytomedicine 36(2017) 201–209.
- Nojima H, Kimura I, Chen FJ, Sugihara Y, Haruno M, Kato A, *et al.* Antihyperglycemic effects of Ncontaining sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. J Nat Prod 1998; 61(3):397-400.
- 19. Hatapakki BC, Suresh HM, Bhoomannavar V, Shivkumar SI. Effect of *Cassia auriculata* Linn. Flowers against alloxan-induced diabetes in rats. J Nat Remedies 2005; 5(2):132-136.
- 20. Maghrani M, Michel JB, Eddouks M. Hypoglycaemic activity of Retama raetam in rats.Phytotherapy Res 2005; 19:125-128.

- 21. Kang MJ, Kim JI, Yoon SY, Kim JC, Cha IJ. Pinitol from soybeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus. J Med Food 2006; 9(2):182-186.
- 22. Vikrant A, Sharma R. A Review on Fruits Having Anti- Diabetic Potential. Journal of Chemical and Pharmaceutical Research. J Chem Pharm Res 2011; 3(2):204-212.
- 23. . Makheswari MU, Sudarsanam D. Database on Antidiabetic indigenous plants of Tamil Nadhu, India.Int J Pharma Sci Res 2012; 3(2):287-293.
- 24. Kamalakkannan N, Prince PS. The effect of Aegle marmelos fruit extract in streptozotocin diabetes: a histopathological study. J Herbal Pharmacother 2005;5:87-96.
- 25. Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G. Hypo-glycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 2006; 107:374-379.
- 26. . Narendhirakannan RT, Subramanian S, Kandaswamy M. Biochemical evaluation of antidiabetogenic properties of some commonly used Indian plants on streptozotocininduced diabetes in experimental rats. Clin Experiment Pharmacol Physiol 2006; 33:1150-1157.
- 27. Narender T, Shweta S, Tiwari P, Papi Reddy K, Khaliq T, Prathipati P et al. Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg Med Chem Lett 2007; 17(6):1808-1811.
- 28. Fr ode TS, Medeiros YS. Animal models to test drugs with potential antidiabetic activity. J Ethnopharmacol 2008; 115:173-183
- 29. Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian J Biochem Biophys 1995; 32(1):49-54.
- 30. Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian J Biochem Biophys 1995; 32(1):49-54.
- 31. Liu CT, Wong PL, Lii CK, Hse H, Sheen LY. Antidiabetic effect of garlic oil but not diallyl disulfide in ratswith streptozotocin-induced diabetes. Food Chem Toxicol 2006; 44:1377-1384.
- 32. El-Demerdash FM, Yousef MI, El-Naga NI. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol 2005; 43:57-63.
- 33. Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin induced diabetic rats. Phytomedicine 2006; 13:624-629.
- 34. Tanaka M, Misawa E, Ito Y, Habara N, Nomaguchi K, Yamada M et al. Identification of five phytosterols from Aloe vera gel as antidiabetic compounds. Biol Pharm Bull 2006; 29:1418-1422
- 35. Pillai VR, Santhakumari G. Hypoglycaemic activity of Melia azadirachta Linn. (Neem). Indian J Med Res 1981; 74:931.
- 36. Schwab U, Louheranta A, Törrönen A, Uusitupa M. Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur J Clin Nutr 2006; 60(9):1073-1080
- 37. Tan BK, Tan CH, Pushparaj PN. Anti-diabetic activity of the semi-purified fractions of Averrhoa bilimbi in high fat diet fed-streptozotocin-induced diabetic rats. J Life Sci 2005; 76:2827-2839
- 38. Yokozawa T, Kim HY, Cho EJ, Choi JS, Chung HY. Antioxidant effects of isorhamnetin3, 7-di-Obeta-Dglucopyranosideisolated from mustard leaf (Brassica juncea) in rats with streptozotocin induced diabetes. Agric Food Chem 2002; 50(19):5490-5495.
- 39. Eddouks M, Maghrani M, Zeggwagh NA, Michel JB. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. JEthnopharmacol 2005a; 97:391-395.

c61

- 40. Taniguchi H, Kobayashi-Hattori K, Tenmyo C, Kamei T, Uda Y, Sugita- KonishiY *et al.* Effect of Japanese radish(*Raphanus sativus*) sprout (Kaiware-daikon) on carbohydrate and lipid metabolisms in normal and streptozotocin-induced diabetic rats. Phytother Res 2006; 20:274-278.
- 41. Kubo H, Kobayashi J, Higashiyama K, Kamei J, Fujii Y, Ohmiya S. The hypoglycemic effect of (7R*, 9aS*)-7- phenyl-octahydroquinolizin-2-one in mice. Biol Pharm Bull 2000; 23(9):1114-1117.
- 42. Tolan I, Ragoobirsingh D, Morrison EY. Isolation and purification of the hypoglycaemic principle present in *Capsicum frutescens*. Phytother Res 2004; 18(1):95-96.
- 43. Zhao R, Li Q, Xiao B. Effect of Lycium barbarum polysaccharide on the improvement of insulin resistance in NIDDM rats. Yakugaku Zasshi J Pharm Society Japan 2005; 125:981 988.

- 45. Wu H, Guo H, Zhao R. Effect of *Lycium barbarum* polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi J Pharm Society Japan 2006; 126:365-3671.
- 46. Babu PS, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde-a potential antidiabetic agent. ~ 158
 ~ Journal of Pharmacognosy and Phytochemistry Phytomed 2007; 14(1):15-22.
- 47. Gray AM. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant *Coriandrum sativum* (coriander). Brit J Nutr 1999; 81(3):203-209.
- 48. Kato A, Higuchi Y, Goto H, Kizu H, Okamoto T, Asano N *et al.* Inhibitory effects of *Zingiber officinale* Roscoe derived components on aldose reductase activity *in vitro* and *in vivo*. J Agric Food Chem 2006; 54(18):6640- 6644.
- 49. Honda S, Aoki F, Tanaka H, Kishida H, Nishiyama T, Okada SM *et al.* Effects of ingested turmeric oleoresin on glucose and lipid metabolisms in obese diabetic mice: a DNA microarray study. J Agric Food Chem 2006; 54(24):9055-9062.
- 50. Oliveira AC, Endringer DC, Amorim LA, Das Grac L, Brandao M, Coelho MM. Effect of the extracts and fractions of *Baccharis trimera* and *Syzygium cumini* on glycaemia of diabetic and non-diabetic mice. J Ethnopharmacol 2005; 102:465-469.
- 51. Ojewole JA. Hypoglycemic and hypotensive effects of *Psidium guajava* Linn. (Myrtaceae) leaf aqueous extract. Methods Findings Experiment Clin Pharmacol 2005d; 27:689-695.
- 52. Musabayane CT, Mahlalela N, Shode FO, Ojewole JA. Effects of *Syzygium cordatum* (Hochst.) [Myrtaceae] leaf extract on plasma glucose and hepatic glycogen in streptozotocin-induced diabetic rats. J Ethnopharmacol 2005; 97:485-490.
- 53. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duehe R. Plants having potential antidiabetic activity: a review. Der Pharm Lett 2010; 2(3):369-387
- 54. Cherian S, Augusti KT. Antidiabetic effect of a glycoside of pelargonidin isolated from the bark of *Ficus bengalensis* Linn. Indian J Exp Biol 1993; 31(1):26-29.
- 55. Serraclara A, Hawkins F, Pérez C, Domínguez E, Campillo JE, Torres MD. Hypoglycemic action of an oral fig-leaf decoction in type-I diabetic patients. Diabetes Res Clin Pract 1998; 39(1):19-22.
- Singap AN, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai T. Hypoglycemic effect of *Egyptian Morus alba* root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharmacol 2005; 100:333-338.
- 57. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990- 2000). Int J Diabetes Metab 2006; 14:1-25.
- 58. Ayodhya S, Kusum S, Anjali S. Hypoglycaemic activity of different extracts of various herbal plants Singh. Int J Ayurveda Res Pharm 2010; 1(1):212-224.
- 59. Sugihara Y, Nojima H, Matsuda H, Murakami T, Yoshikawa M, Kimura I. Antihyperglycemic effects of gymnemic acid IV, a compound derived from *Gymnema sylvestre* leaves in streptozotocin-diabetic mice. J Asian Nat Prod Res 2000; 2(4):321-327
- 60. Kodama T, Miyazaki T, Kitamura I, Suzuki Y, Namba Y, Sakurai J *et al.* Effects of single and long-term administration of wheat albumin on blood glucose control: randomized controlled clinical trials. Eur J Clin Nutr 2005; 59(3):384-392.
- 61. Poppitt SD, van Drunen JD, McGill AT, Mulvey TB, Leahy FE. Supplementation of a high-carbohydrate breakfast with barley beta-glucan improves postprandial glycaemic response for meals but not beverages. Asia Pac J Clin Nutr 2007; 16(1):16-24.
- 62. Fadzelly AB, Asmah R, Fauziah O. Effects of *Strobilanthes crispus* tea aqueous extracts on glucose and lipid profile in normal and streptozotocin-induced hyperglycemic rats. Plant Foods Human Nut 2006; 61:7-12.

^{44.}

- 63. Basch WE, Gabardi S, Ulbricht C. Bitter Melon (*Momordica charantia*): A Review of Efficacy and Safety. Am J Health-Syst Pharm 2003; 60(4):356-359
- 64. Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: a review. J Altern Complement Med 2004; 10(2):369-378.
- 65. Shetty AK, Kumar GS, Sambaiah K, Salimath PV. Effect of bitter gourd (*Momordica charantia*) on glycaemic status in streptozo-tocin induced diabetic rats. Plant Foods Human Nut 2005; 60:109-112.
- 66. Sathishsekar D, Subramanian S. Beneficial effects of *Momordica charantia* seeds in the treatment of STZinduced diabetes in experimental rats. Biol Pharm Bull 2005; 28:978-983.
- 67. Lima CF, Azevedo MF, Araujo R, Fernandes-Ferreira M, Pereira-Wilson C. Metformin-like effect of *Salvia officinalis* (common sage): is it useful in diabetes prevention. British J Nut 2006; 96:326-233
- 68. Dhanabal SP, Sureshkumar M, Ramanathan M, Suresh B. Hypoglycemic effect of ethanolic extract of *Musa sapientum* on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. J Herb Pharmacother 2005; 5(2):7-19.
- 69. Kanter M. Effects of *Nigella sativa* and its Major Constituent, Thymoquinone on Sciatic Nerves in Experimental Diabetic Neuropathy. Neurochem Res 2008; 33(1):87-96.
- 70. Bever B, Zahnd G. Plants with oral hypoglycemic action. Quart J Crude Drug Res 1979; 17:139-196.
- 71. Kim HK, Kim MJ, Cho HY, Kim EK, Shin DH. Antioxidative and anti-diabetic effects of amaranth *(Amaranthus esculantus)* in streptozotocin-induced diabetic rats. Cell Biochem Function 2006; 24:195-199.
- 72. Gupta RK, Kesari AN, Murthy PS, Chandra R, Tandon V, Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of *Annona squamosa* L. in experimental animals. J Ethnopharmacol 2005a; 99:75
- 73. Reyes BA, Bautista ND, Tanquilut NC, Anunciado RV, Leung AB, Sanchez GC *et al.* Anti-diabetic potentials of *Momordica charantia* and *Andrographis paniculata* and their effects on estrous cyclicity of alloxan-induced diabetic rats. J Ethnopharmacol 2006; 105:196-200.
- 74. Hernández-Galicia E, Calzada F, Roman-Ramos R, Alarcón-Aguilar FJ. Monoglycerides and fatty acids from *Ibervillea sonorae* root: isolation and hypoglycemic activity. Planta Med 2007; 73(3):236-240.
- 75. Suryanarayana P, Kumar PA, Saraswat M, Petrash JM,Reddy GB. Inhibition of aldose reductase by tannoid principles of *Emblica officinalis*: implications for the prevention of sugar cataract. Mol Vis 2004; 10:148-154.
- 76. Prakash P, Gupta N. Therapeutic uses of *Ocimum sanctum* Linn (Tulsi) with a note on eugenol and its pharmacological actions: a shortreview. Indian J Physiol Pharmacol 2005; 49:125-131.
- 77. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 2005; 97(3):497-501.
- 78. Gupta RK, Kesari AN, Watal G, Murthy PS, Chandra R, Tandon V. Nutritional and hypoglycemic effect of fruit pulp of *Annona squamosa* in normal healthy and alloxan-induced diabetic rabbits. Annals Nut Metabol 2005b; 49:407-413.